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We employ a simple density functional approach to predict the radial distribution and other structure
related functions for a model homogeneous colloidal dispersion. The scheme is based on an interconnec-
tion, first pointed out by Percus, between the density of an inhomogeneous fluid in the field of an exter-
nal potential and the radial distribution function of the corresponding uniform fluid, if the external po-
tential is chosen as the pair potential itself. The two-particle direct correlation function of the homo-
geneous colloidal dispersion which is required as input is taken from the rescaled mean spherical approx-
imation for particles interacting via screened Coulomb potential. Both perturbative and nonperturbative
weighted density approaches are employed and the calculated quantities are shown to agree well with re-

sults from other sources.

PACS number(s): 82.70.Dd, 61.20.Gy, 61.25.—f

I. INTRODUCTION

Density functional theory [1] (DFT) has been a highly
successful and versatile tool for the study of not only
many-electron quantum systems [2] but many-particle
classical systems [3] as well. In recent years, DFT has be-
come increasingly popular, particularly for the descrip--
tion of the equilibrium structure and thermodynamics of
nonuniform fluids [4]. With this approach, the free ener-
gy or the grand potential of a many-particle system is
treated as a functional of its single-particle density [5],
and the crux of the problem lies in the fact that the exact
form of this functional for a general inhomogeneous den-
sity distribution p(r) is still unknown. A major area of
research in this field therefore involves attempts to find a
suitable approximate form for this energy density func-
tional.

Although DFT was originally devised for the study of
inhomogeneous systems, its applicability is easily extend-
ed to uniform systems as well. The connection between
the structure of a nonuniform fluid with that of the corre-
sponding uniform fluid was first pointed out by Percus
[6]. In a homogeneous fluid of density p,, the probability
of locating one particle at the origin and another at posi-
tion r is pyg(r), where g(r) is the pair distribution func-
tion. The same can also be viewed as an inhomogeneous
density distribution p(r) around the particle fixed at the
origin, which provides the external potential to the
remaining particles of the fluid. Since a density function-
al approach as applied to the structure of an inhomogene-
ous fluid can be used to determine p(r) in the presence of
the external potential arising from fixing a particle at the
origin, which is equal to the pair potential of the system,
one can obtain g(r) simply by calculating p(r)/p,.

This method also provides a means to assess the validi-
ty and accuracy of an approximate free energy density
functional used for the study of a nonuniform fluid. Re-
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cently, this approach has been followed for hard sphere
fluids [7-9] involving only short range correlations. It
would however be of interest to investigate the suitability
of such approaches to systems involving long range in-
teraction potentials as well. Complex fluids such as col-
loidal suspensions [10] have attracted a great deal of at-
tention in recent times because of their applications in
many studies of basic, as well as applied, nature. The
structure of homogeneous colloidal suspension is of im-
mense importance and has been studied earlier by using
integral equation methods [11], mean spherical approxi-
mation [12,13] (MSA), etc. In the present work, it is our
intention to investigate the suitability of the density func-
tional approach to the study of structure of the homo-
geneous colloidal suspension. For this, we employ the
currently available approximations [14] to the density
functionals as applied to inhomogeneous simple model
fluids. Applicability of these procedures, as well as their
extension to the case of ionic fluids, has already been
shown to be quite successful [15]. The phase diagram of
a colloidal dispersion consisting of ordered and liquid
phases as a function of the bulk density and the dissotved
salt concentration has also been successfully predicted
[16] through the use of approximate density functionals.

The interaction between the macro particles of a
charge-stabilized colloidal suspension is assumed to be
well represented by the Derjaguin-Landau-Verwey-
Overbeek (DLVO) expression, which corresponds to the
screened Coulomb potential obtained from linearization
of the Poisson-Boltzmann equation and is given by

d(r)=(Z%2/€e)(1+kd /2) %exp[ —«(r —d)]/r , (1)

for an interparticle distance r higher than the hard sphere
diameter d and infinity otherwise (i.e., for »r <d). Here
the inverse screening length « is given by
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where p, is the number density of the colloidal particles
of charge Ze with e as the electronic charge, n, is the
number density of the ions of type a with charge Z ,e, € is
the dielectric constant of the medium, and 8 (=1/kzT)
represents the inverse temperature, kp being the
Boltzmann constant.

The purpose of the present work is to obtain the homo-
geneous phase structure-related functions [g (#) and relat-
ed quantities] for the colloidal suspension using DFT and
to compare the results with other theoretical and simula-
tion results, wherever available. In Sec. II, we discuss the
general density functional formalism as applied to the
structure of nonuniform (and also uniform) fluids with
different approximate routes to the density functionals
discussed in Sec. ITI. The results of calculation of the ra-
dial distribution function and related quantities are com-
pared with the MSA and simulation results in Sec. IV.
Finally in Sec. V, we present a few concluding remarks.

II. THEORY

In DFT, the grand potential Q[p] of a many-particle
system under the influence of an external potential v (#) is
treated as a unique functional of the density distribution
p(r) and is expressed as

Qlp]=Flpl+ [drp(r)

where i is the chemical potential and F[p] is the intrinsic
Helmholtz free energy consisting of two contributions,
viz.,

Flp]=Filpl+Flpl - )

Here, the ideal gas contribution F4[p] is the free energy
of the system with the same density but having no inter-
nal interactions among the particles, and F,[p] is the ex-
cess free energy contribution arising from the interparti-
cle interactions.

The equilibrium density profile of the inhomogeneous
fluid corresponds to the minimum of the grand potential
satisfying 8Q[p]/8p(r)=0, which leads to the Euler-
Lagrange equation

u=v(r)+8F[p]/8p(r)
=v(r)+6F[pl/8p(r)+86F.[p]/8p(r) . (5)

[v(r)—pu], (3)

Using the functional form of Fjy[p], which is exactly
known and is given by

Fulpl=B"" [drp(r){In[p(r)A*]—1} , ()

where A is the thermal de Broglie wavelength, one ob-
tains from Eq. (5) the equilibrium density distribution
given by

r)=[exp(Bu)/A3Jexp{ —Bv(r)+c'!

where

U[pl;r)=—PB8F . [p]/8p(r) (8)

phn)}, D
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is the one-body direct correlation function (DCF) of the
inhomogeneous fluid. If the inhomogeneous fluid is in
contact with the bulk fluid, its chemical potential u is
equal to that of the bulk fluid [where v (7) is zero and
p(r)=pe], and this leads to an equation for the density
profile, given by

p(r) —Bo(r)+cV((plin)—c(pe)} , 9

where ¢, refers to the uniform fluid.

In Eq. (9), if one chooses the external potential v(r) to
be equal to ¢(r), the pair potential between one particle
at point r and another singled out and located at the ori-
gin, the resulting density function p,(r) signifies the dis-
tribution of the remaining particles around the “tagged”
particle at the origin, thus providing a measure of the
pair distribution function through the relation

Pe(r)=peg(r) . (10)

=poexp{

This result, together with Eq. (9), leads to an expression
for g (r) of the homogeneous fluid, given by

—Bo(r)+c Vpg i) =g (p)} . (11)

It is also of interest to calculate other structure related
functions, such as the cavity function [11]
y(r)=g(rlexp[B¢(r)] and the bridge function b(r)
defined by the relation g(r)=exp{—PB¢(r)+h(r)
—c(r)—b(r)}, where c{?)(r) is the two-particle direct

correlation function defined as

—B8*F ., [p]/8p(r;)8p(r,) . (12)

g(r)=exp{

crp,r,)=
Using Eq. (11), we can express these two functions as

)—ct(py) (13)

Iny(r)=c"([pyg I;r

and

b(r)=h(r)—cF(r—cM([pg;r)+ci(py), (14)

where A (r)=g(r)—1 denotes the pair correlation func-
tion.

Equations (11), (13), and (14) provide in principle an
exact route to the calculation of the uniform fluid struc-
ture related quantities g(r), y(r), and b (r) if the func-
tional ¢'"([p(r)];r) or F,[p(r)] is known. But, unfor-
tunately, neither of them is known exactly for a general
inhomogeneous density profile p(r), and hence suitable
approximations are essential. In the following section,
we discuss the approximate procedures for obtaining
¢ D([pog ];1) based on experiences for uniform fluids.

III. APPROXIMATION SCHEMES
FOR THE DENSITY FUNCTIONALS

The excess free energy functional F, [p(r)] is a univer-
sal (but unknown) functional of the single-particle density
p(r) for a given interparticle potential ¢(r) and is in-
dependent of the external potential v(r). We discuss here
three approximation schemes, one of which is a perturba-
tive method and the two others are nonperturbative
weighted density based methods. All the schemes are
based on the knowledge of F,,[p] or its functional deriva-
tives, viz., the direct correlation functions for the uniform
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counterpart of the system concerned, i.e., when the densi-
ty is uniform.

A. Functional Taylor expansion approach

Although the functional Taylor expansion of
c¢'Y([p(r)];r) about p, in powers of the density deviation
[p(r)—p,] is in principle exact, lack of knowledge about
the higher order functional derivatives or the DCF’s even
for the uniform system forces one to restrict to only a
truncated expression. By neglecting higher order terms,
the simplest expression that can be written for ¢! is
given by

cMlpag lir)=c (po)+ [ drae? (r,r55p0)p(r2)=po] ,
(15)

where c{" denotes the n-particle DCF of the uniform
fluid.

B. Nonperturbative weighted density approach
of Denton and Ashcroft

In this weighted density approximation (WDA), origi-
nally due to Denton and Ashcroft [17], the quantity
c¢D([p(r)];r) for a nonuniform density distribution p(r)
is assumed to be the same as that obtainable from its uni-
form fluid counterpart c{!’, evaluated at an effective den-
sity p, which is obtained by the suitable weighted average
of the actual inhomogeneous physical density distribu-
tion. Although c{"’ does not depend on r, the quantity
c([p(r)];r) is position dependent because of the r-
dependence of p(r). Thus one has

cVpg o= (p(r) (16)
with the weighted density p(r), defined as the average
p(r= [dr'p(rw(r—r';p(r)) (17)

with respect to a weight function w, which should in-
tegrate to unity but is otherwise arbitrary. The normali-

J
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zation of w ensures that Egs. (16) and (17) yield the
correct ¢! in the limit of uniform density, i.e., p(r)— py.
Further demanding that in the same limit the functional
derivative of ¢'!, given by the WDA expression of Eq.
(16), should also correctly reproduce the second order
correlation function cE,Z), Denton and Ashcroft [17] have
arrived at a simple and unique specification of the weight
function given by

w(r—r';p)=c (r—1';p0)/[3ci(pg) /3py] . (18)

C. Nonperturbative weighted density approach
of Tarazona

In the Tarazona [18] version of WDA, it is the excess
free energy density (per particle) ¥,,(p) of the inhomo-
geneous fluid defined as

Folp(M]= [drp(r)(p(r) (19)

that is evaluated using a weighted density. Here,
Yex(p(r)) is obtained by evaluating the corresponding ex-
pression for the uniform fluid, i.e., ¥2(p,), using an
effective density p in place of p,, which is again a weight-
ed average of the physical density as given by Eq. (17).
The weight function here is different but satisfies the
same normalization condition; it is also specified by re-
quiring that the two-particle DCF obtained from the
second order functional derivative of the WDA expres-
sion for F,,[p], given by

Folp(n]= [drp(r)yd(p(r) , (20)

should reproduce the exact result for c{?’ [see Eq. (12)] in
the limit of uniform density. One also employs here a
simple expansion for the weight function, viz.,
w(r;p)=wy(r)+w,(r)p+w,(r)p? and a suitable expres-
sion for the free energy quantity ¥°,. The final expression
for the one-body DCF corresponding to the first deriva-
tive of the WDA expression for free energy, entering in
Eq. (9) and hence Eq. (11) through Eqgs. (8) and (20), is
given by

cM(r;[pog 1)=—BLY% (B + [ dr'p(r' Wo(B(r Dw(r—r';5(r)) /{1—Fy(r' ) —2p(r' )Py r)} ] 21)

where p;’s are the weighted densities corresponding to
the weight functions w;’s in the expansion of w (r;p).

D. Application to colloidal systems

For a fluid of colloidal particles interacting through
the DLVO potential, the external potential v (#) that ap-
pears in Eq. (11) is just the pair potential ¢(r) given by

Eq. (1). In the perturbative approach, c“’(r;pog) in the
inhomogeneous phase is obtained through the perturba-
tion expansion [Eq. (15)] truncated at first order in the
density deviation for which the two-particle DCF of the
uniform fluid is to be used as input. Analytical expres-
sion for this DCF for colloidal suspension interacting
through DLVO potential has been obtained using the re-
scaled mean spherical approximation [12,13] (RMSA)
and is given by
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¢ (x)= A +Bx +(41)m Ax*+C sinh(kx) /x

+ F[cosh(kx)—1]/x, for x <1 (22a)

=—vyexp(—kx)/x, forx>1, (22b)

where x =r/d; y=B(Z%?/e)exp(xd)/(1+kd /2)* and
A, B, C, and F can be expressed [12,13] explicitly in
terms of the packing fraction 7=(7/6)p,d>, k =«d, and
v. This expression is, however, not directly applicable to
systems with very low densities as it leads to unphysical
contact values for g (7). Since for the charged colloidal
systems, the Coulomb coupling is generally very strong
(large value of y), the distance of closest approach is usu-
ally larger than the actual hard sphere diameter. A suit-
able rescaling of the actual hard sphere diameter to a
larger value leading to a fictitious higher value of 7 has
been shown [13] to be essential for the MSA result of Eq.
(22) to be applicable for very low densities. Although ap-
proximate, the RMSA result for DCF is reasonably accu-
rate and close to other approximations [13,19], and it has
also been found to be successful in a number of predic-
tions and studies involving colloidal suspension [see, for
example, Refs. [16] and [19]].

While for the perturbative approach (which we call
scheme A), the DCF cg” given by Eq. (22) is sufficient,
for the nonperturbative weighted density approaches one
requires the one-particle correlation function cj!’ or the
free energy density 9°,, explicit expressions for which are
not available. The expression for 662), however, consists
of a short range part and a long range part, and this
prompts us to propose to obtain ci!’ by choosing a suit-
able short range reference system. Thus, in the spirit of
the work of Curtin and Ashcroft [20] for Lennard-Jones
fluid (see also Refs. [16(b)] and [16(c)], we obtain only a
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reference (short range) part cpy(r;p(r)) of the total
correlation through WDA, while the remaining (primari-
ly long range) contribution AcV[=cV(r;p(r))
—cQ(r;p(r))] is obtained by the perturbative approach.

One possible choice of the reference system is the sim-
ple hard sphere fluid, since for this system correlation is
of short range and analytical expressions of the required
quantities are known. The expression for c¢(? for hard
sphere fluid within the Percus-Yevick approximation is

given by
(cé)Z))HS(x):a-Q-bx—f—(1/2)17ax3, for x <1 (23)

and zero otherwise, where a=—(1+2%)/(1—n)* and
b=6n(1+7/2)*/(1—n)*. The corresponding results for
(¢! s and (Y2 )ys are given by

(eM)gs=—(Tn—1302/2+159°/2) /(1—7)?
+In(1—7) ,
( SX)HSZB*I’U(“-—T)’!})/(I—?’])Z »

where (¢° )y is the accurate Carnahan-Starling result.

In view of the availability of these analytical expres-
sions for c{!’ and ¢2, for the hard sphere fluid, we consid-
er it to be the reference system and obtain (scheme B) ¢/
by evaluating (c{ )ys(p(7)) with p(r) obtained from the
Denton-Ashcroft procedure given by Egs. (17) and (18).
Alternatively, ¢ can be obtained (scheme C) from Eq.
(21) by evaluating ¥2,(p(r)) with p(7) obtained from Egs.
(17) and the Tarazona prescription for the weight func-
tion. In both schemes B and C, one obtains Ac'" pertur-
batively through an equation similar to Eq. (15), and
hence the quantity involving ¢! appearing in Egs. (9),
(11), (13), and (14) is expressed as

(24a)
(24b)

{c(l)([Pog]H')'"CE)l)(Po)} :(Cz)l))Hs(ﬁ(r))—(cg”)HS(PO)'*'Pofdl'z[CE)Z)(|f1_r2|§P0)_(C§JZ))Hs(|r1_f2|;Po)][g(f2)_1] .

IV. RESULTS AND DISCUSSION

The nonlinear integral equation [Eq. (11)] for the pair
distribution function g(7) [and hence also Eqgs. (13) and
(14) for the functions Iny (r) and b ()] have been solved
numerically using an iterative self consistent procedure
using g (#)=1 as the initial chosen input. Due to spheri-
cal symmetry of the problem, all the three-dimensional
(3D) integrals are simplified by analytically integrating
over the angular variables, requiring only 1D integrals in-
volving the radial coordinate to be evaluated numerically.
We have employed a uniform mesh for discretization and
trapezoidal rule for numerical intregation. The conver-
gence criterion chosen in the iterative procedure corre-
sponds to a small value ( <107 !°) for the average mean
square deviation of g(r), expressed as > g™

(25)

—g"~Y(#)]? divided by the number of mesh points,
after the nth iteration.

All the calculations presented here correspond to tem-
perature T'=298 K and the hard sphere diameter for the
colloidal particles d =823 A. These values have been
chosen so that some of the results can be compared with
available computer simulation results. The distances are
measured in units of d, the bulk density p, is indicated in
terms of the packing fraction n=(7/6)p,d>, and the
screening parameter « is measured in terms of the dimen-
sionless quantity («d). The quantity c{?’ for the uniform
colloidal suspension has been obtained from Eq. (22), cor-
responding to the RMSA results of Hansen and Hayter
[12,13]; for the hard sphere contributions (¢ )ys,

(cg”)Hs, and (¢SX)HS, used for the WDA of the short
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range contribution, we have employed the analytical re-
sults given by Egs. (23) and (24), corresponding to the
Percus-Yevick approximation.

The calculations have been performed for a low density
suspension (7=0.00042), as well as a moderately con-
centrated suspension (7=0.2579). The effects of higher
charges of the colloidal particles and higher values of the
screening parameters are also studied.

For the low density colloidal suspension (7=0.00042)
with the parameters Z =258, kd =0.15, and y =580, the
scaling parameter (s =d /d') for the diameter is found to
be 0.117 65. This corresponds to the minimum value of
the scaled diameter d’, for which the resulting g (r) from
a direct Fourier transform of the correlation function
(and use of Ornstein-Zernike equation) becomes nonnega-
tive at short distances. The profiles of the radial distribu-
tion function g (r) calculated through the schemes A to C
for c“)(p(r)), discussed in Sec. III, are shown in Fig. 1
together with the RMSA results obtained from direct nu-
merical Fourier transform of the structure factor corre-
sponding to the RMSA correlation function and also the
computer simulation results (taken from Ref. [19]). On
average our results are close to the RMSA result, but the
peaks (especially near contact) are under predicted as
compared to the computer simulation result. The
weighted density schemes B and C yield a slightly larger
peak height for the first peak as compared to the pertur-
bative approach (scheme A). This deviation of our re-
sults from that of simulation near contact (i.e., at r =d)
may be due to the fact that in the perturbative approach
(scheme A) terms beyond c¢? are neglected; and in the
nonperturbative approaches (schemes B and C), although
higher order correlations are partially taken into account
in an averaged manner, for the present case of colloidal
dispersion only hard sphere or short range correlations

2.50

g(r)

125

1 1
0.0 20.0 40.0
r/d

FIG. 1. Plot of radial distribution function g(r) vs r/d for a
model colloidal suspension (n=0.00042, k =0.15, y=580.0,
Z =258). Calculated results correspond to different schemes
mentioned in the text. Simulation results are from Ref. [19].

- scheme A; — —. —. scheme B; — — — scheme C; ——
RMSA; O, simulation.
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are treated through WDA because of the constraints
mentioned. Other issues, related to the fact that some of
these approximate theories do not exactly satisfy the viri-
al equation relating the bulk pressure to the contact den-
sity g(r =d), are also to be considered. In this case of
very low density, the scaling of the diameter of the parti-
cle has been essential according to RMSA, and this is
reflected in the peak positions of g (r). The first peak has
thus appeared at a distance slightly larger than the scaled
diameter (d’), and the separations between the successive
peaks are also integral multiples of the scaled diameter
(d"). At higher values of 17 corresponding to higher phys-
ical densities, which involve no scaling of the diameter,
the first peak position, however, appears near r/d =1.0,
as shown in Fig. 2, where we have plotted g(r) for
7=0.2579 and other parameters as «kd=1.276 and
v =68.28. The values chosen for calculation correspond
to the quantities obtained after scaling the corresponding
parameters for the low density situation. But here they
are taken as physical parameters instead of as fictitious
ones arising from scaling, and hence the scaling factor is
unity. The plots of g(r) in Figs. 1 and 2 provide insight
into the effect of scaling.

The effect of increasing the charge on the colloidal par-
ticles is evident from the buildup of more structure in
g(r), as shown in Figs. 3(a) and 3(b), where we have plot-
ted the results for Z =600 and Z =1000, respectively; 7
is the same as in Fig. 1. The other parameters, however,
are modified through their dependence on the charge Z
and their values are indicated in the figures. In Fig. 4, we
have plotted g (r) obtained for a different value of the
screening length, but other parameters are the same as in
Fig. 1. All these results are observed to agree quite well
with the corresponding RMSA results (shown only for
Figs. 1 and 2) obtained by Fourier transforming the

20

g(r)

1.0

00 30 ' 6.0
r/d

FIG. 2. Plot of radial distribution function g(r) vs r/d for a

model  colloidal  suspension (9=0.25787, k=1.2764,
Y =68.28511, Z =258, s =1.0). — — — scheme A (schemes B
and C are not distinguishable from scheme A in the present
scale); , RMSA.




3852

0
3 @

g |
15F
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r/d
3.50
. (b)

g r

175

0’0% 1 1 1

.0 30.0 600
r/d

FIG. 3. (a) Plot of radial distribution function g (r) vs r/d for
a model colloidal suspension (7=0.00042, k =0.2288,
y=3163.14, Z =600, s =0.104 7). , scheme A; — — —
scheme B (scheme C is indistinguishable from scheme B in the
present scale). (b) (9=0.00042, k =0.2954, y=28854.52,
Z =1000, s =0.10008). , scheme A; — — —, scheme B
(scheme C is indistinguishable from scheme B in the present
scale).

structure factor S(Q) from Hansen and Hayter’s RMSA
[13]. The structure related functions Iny (r) and b (7) cal-
culated through Egs. (13) and (14) are also plotted in
Figs. 5 and 6, respectively, for the same parameters as in
Fig. 1. It may be noted that b (r)=0 for scheme A, and
hence only results of schemes B and C are plotted in Fig.
6. Since computer simulation or other theoretical results
are not available for Iny (r) and b (r), any test of our re-
sults has not been possible at this time. However, as is
evident from Figs. 5 and 6, the results obtained here from
the different approximate schemes are close to each oth-
er. It may also be noted that in the WDA based schemes,
c¢?(py;r) of the uniform fluid has been used and the
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2.0

g 1

1.0

. 1 .
0'%.0 200
r/d
FIG. 4. Plot of radial distribution function g(r) vs r/d for a
model colloidal suspension (7=0.00042, k =0.25, y=586.19,
Z =258, 5s=0.12204). , scheme A; scheme B
(scheme C is indistinguishable from scheme B in the present
scale).

40.0

50.0

In y()|

T

250

095 ' 25 ‘ 30

r/d
FIG. 5. Plot of Iny () vs r /d for a model colloidal suspension
(p=0.00042, k =0.15, y=580.0, Z =258, s =0.1175).

’

scheme A; - - -, scheme B; — — —, scheme C.
4.0
b(r)
201
1 1 n
0.0 4.0 8.0
r/d
FIG. 6. Plot of b(r) vs r/d for a model colloidal suspension
(n=0.00042, k=0.15, y=580.0, Z =258, s=0.1175).
— — —, scheme B; , scheme C.
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present scheme of obtaining g (r) can be considered as
only the first level of iteration. One can also recalculate
it from calculated g(r) through the Ornstein-Zernike
equation and use the same through WDA again to obtain
new g(r). This second level of iteration, however, re-
quires tremendous computational effort, and moreover,
improved accuracy is also not always guaranteed.

V. CONCLUDING REMARKS

In this work, we have presented a simple density func-
tional procedure for the study of properties of model col-
loidal suspensions. A combined procedure consisting of
WDA for the short range (hard sphere here) and a simple
perturbative scheme for the remaining long range corre-
lation, even with a first level of iteration, is found to pro-
vide quite good prediction of the radial distribution func-
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tion of bulk colloidal suspensions. This approach is an
attempt to employ WDA in the study of the structure of
colloidal systems (see Ref. [16] for studies of freezing),
and the present success has provided support for its accu-
racy and applicability. In view of the recent interest in
the study of the structure of inhomogeneous colloidal
suspensions [19], it is important to have reasonably accu-
rate simple theories for its prediction. Using the formal-
ism discussed here, we are presently investigating the
structure of colloidal suspension confined between planar
slits or cylindrical pores, which are of immense impor-
tance in various physicochemical phenomena.
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